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Abstract

Constraints are studied in a variety of computer science disciplines.
Comparative studies of the different perceptions of constraints and
approaches to their management can lead to valuable cross-fertilisation
of the different research tracks.

This paper sets out such a comparative study. More in particular, it is
shown how constraints between graphical objects can be modelled in an
advanced model for object databases. Through examples, it is shown
that a “divide and conquer” strategy, developed in database research is
also a viable approach for constraint management in graphical systems.

1 Introduction

In a wide variety of applications, constraints are a natural part of the speci-
fication of a system. Consequently, constraints and constraint management
are topics in a spectrum of computer science research areas, such as com-
puter graphics and databases. Since the research communities are largely
disjoint, the research tracks in constraints develop more or less in isolation.

Comparative studies of the different perceptions of constraints and the ap-
proaches to their management can lead to valuable cross-fertilisation of the
different research tracks. For example, both in computer graphics and in
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databases embedding constraint management in an object-oriented setting
causes conflicts with the encapsulation of attributes. Solutions in one area
might induce solutions in the other.

In this paper we set out such a comparative study, by showing how a solution
for constraint management in (active) object-oriented databases can be used
to model constraints between graphical objects. The key-observation of this
solution is that a constraint is a relation between objects.

Maintaining integrity constraints in databases has always been an important
subject of research. The initial approach was often to check for constraint
violation on the commit of a transaction. If the transaction violated the
constraint, it was aborted. A more sophisticated approach was made pos-
sible by active database management systems (ADBMS) [13]. An ADBMS
offers a facility to define production rules. A commonly accepted format
for rules in databases is an Event-Condition-Action (ECA) triple. On the
event specified the action is executed if the condition is satisfied. Thus,
it becomes possible to implement corrective actions for constraint violation
beyond transaction abortion. An example is the invocation of a wire re-
arrangement algorithm if a minimum distance constraint is violated in a
circuit design system.

A number of active DBMSs have been built. At first using the relational
paradigm [11, 14], more recently systems have been based on the object-
oriented paradigm [10, 7]. A description of the use of active rules for the
enforcement of constraints can be found in [6].

How rules are integrated with the rest of the database is a subject of dis-
cussion. Rules can be integrated with the object database by making them
objects as well [8]. This approach emphasises easy manipulation of rules.

Another approach starts from the premise that rules are part of the be-
haviour of objects. In other words, they should be encapsulated with the
object. An object-oriented DBMS that offers such encapsulation is SAMOS
[10]. SAMOS, however, is a hybrid model, rules can be part of the class def-
inition, and they can be defined in separate objects. We take this approach
to its extremes, all behaviour is encapsulated within an object. This makes
the objects autonomous.

Object autonomy is the fundamental concept of the data model in this paper.
Autonomy has two sides. First, as stated in the previous paragraph, all static
and dynamic aspects of an object are defined within the object. Secondly,
the object is subjected to its own, local, control only. That is, there is no
central control.



The development of a database of autonomous objects is motivated by a
number of developments in computing and in business. Developments in
parallel computers and networking raise the question of viability of central
control in a database system. Examples are load-balancing problems in
massively parallel computers or trying to track the nodes connected in a
mobile network. It may very well be that the overhead of such control
affects system performance in such a way that distribution of all control to
components of the system is necessary. In other words, the components are
forced to be autonomous.

On the other hand there are situations were central control of an information
system is not wanted. This is the case in a lot of inter-organisation infor-
mation systems. Examples of these are trading systems in financial markets
and chain information systems integrating suppliers and customers. In such
systems the owners of the parts will not want to give up control over their
part of the system. Thus, we need a system that preserves the autonomy of
the components of the system.

The onset of active components in database systems is parallelled in the
computer graphics community. For example, the programming language
PROCOL [5] and the MADE object model for multimedia applications [2],
feature active objects. Moreover, large collections of communicating, inde-
pendent processes are supported by MANIFOLD [3]. This parallel devel-
opment suggests that it is worthwhile to consider the database solution of
constraint management in an active system for computer graphics.

A data model underlying a database system serves to offer a clear concep-
tual view of the information we bring into an information system. This
conceptual view is offered in terms of objects and their relations. The con-
tribution database research can make to the area of computer graphics lies
in the prominent role of relations. A constraint between objects is a special
kind of relationship between those objects. More in particular, in this paper
we show that this localisation of constraints offers a flexible mechanism for
constraint management in computer graphics.

Please note that this paper is not an attempt to integrate the two paradigms
of object-oriented and constraint programming, such as for example [9]. We
simply show how the techniques used in databases can be applied to the
field of computer graphics.

The roadmap for this paper is as follows. In the next section we introduce
the concepts of the autonomous datamodel, a full description of this model
can be found in [1]. In Section 3, it is shown how (computer graphics)
constraints are defined in this model. The fourth and final section of this
paper contains our conclusions from this exercise.



2 The Autonomous Data Model

In the previous section we explained what object autonomy is and what
developments promote object autonomy. In this section we describe how
autonomous objects can form the foundation of a database system.

2.1 A Database of Autonomous Objects

In a database of autonomous objects everything that can be specified a priori
of an object is defined on the object itself. In particular, the behaviour of
an object is defined by three components, viz., the methods, the (dynamic)
constraints and the rules.

In the methods one specifies what an object can do. The (dynamic) con-
straints specify which methods an object is willing to execute in a given
context; in general, it are stipulations about the order in which methods
have to be executed. The rules specify when an object will execute a given
method. Rules state actual actions to be taken in certain situations de-
scribed in terms of events and object states. Thus, the first two components
describe potential behaviour, whereas the last component describes actual
behaviour.

Compared to more traditional object-oriented databases, the rule compo-
nent of the behaviour specification is new. That is, traditionally only po-
tential behaviour is specified whereas autonomous objects also contain their
actual behaviour.

Orthogonal to the active behaviour of objects is the evolution of their rela-
tions and capabilities. During its lifecycle an autonomous object develops
just like anything in the real world from people to forms. An object is
created, acquires and loses relations and consequently gains and loses capa-
bilities. For example, a mouse pointer that is moved over different windows,
is related to the window it is currently in. The actions that can be performed
by the mouse are dependent on the window it is in.

A further example is given by a multimedia movie. Suppose there are differ-
ent presentation objects or players for video, audio and text in the system.
The movie has relations with those presentation objects currently associ-
ated with it. What actions can be performed on the movie is dependent on
the presentation objects currently related to the movie. For example, if the
movie enters a relation with the video player, it gains methods to have its
video component displayed. Once it loses this relation, it loses the capability
to display its video component.



These characteristics make a number of requirements on the data model.
Firstly, objects are autonomous in trying to initiate and terminate rela-
tions. Secondly, the capabilities of an object are dependent on the relations
it is currently involved in. Therefore we need a mechanism that, often tem-
porarily, extends an object. In the next sections we will first explain what
an individual autonomous object looks like. After that we will describe how
relations between autonomous objects are modelled.

2.2 An individual autonomous object

To get a more concrete picture of a database of autonomous objects we will
first show how an individual autonomous object is defined. An autonomous
object has attributes, methods, rules, and constraints. We will often refer
to these as the capabilities of an object.

Attributes Like any object, an autonomous object is defined by data and
behaviour. The data in an object are the attributes defined for it. These can
be any basic types, and tuples and sets formed of these. The encapsulation
of attributes and methods is the same. An attempt to access an attribute
from outside an object is treated as a method call. Thus, access to attributes
is controlled through the dynamic constraints of an object. Attributes are
declared in the attribute section of an object in a very straightforward way.
For example, the attribute section of a line object might look as follows:

Attributes
Position:  (x:integer, y:integer)
Angle: integer

Length: real

Methods Methods define the actions an object is able to perform. Meth-
ods are declared in the method section of an object. Methods can change
an object’s attributes and can call methods in other objects. An example
of the methods of a line object is:

Methods
Rotate(degrees:integer) {
angle := angle + degrees
}
Translate(xtrans:integer, ytrans:integer){
Position.x := Position.x 4+ xtrans
Position.y := Position.y + ytrans

}



Rules The active behaviour of an object is event-driven. It is defined by
event-condition-action (ECA) rules. This means that on a specified event the
action is executed if the condition stated is satisfied. All three components
are about the object the rule is defined on and the objects that can be
reached from it through path expressions. A very simple example is a rule
that triggers a redraw each time a line object is translated or rotated.

Rules
On Rotate
do Redraw;

On Translate

do Redraw;

Dynamic Constraints The behaviour of an object can be constraint
through the definition of dynamic constraints. These are basic process al-
gebraic expressions [4] with guards. This means that dynamic constraints
can enforce sequencing and preconditions of methods. An example of a pre-
condition is that a line in the origin of the coordinate system may not be
rotated. An example of sequencing is that a redraw must take place after a
rotation or a translation before any other action is taken.

Dynamic Constraints
([Position.x!=0 or Position.y!=0]Rotate)*
(Rotate;Redraw)*
(Translate;Redraw)*

2.3 Relations between Objects

In a database we have entities such as the bank and natural persons that
exist independently. These are the ordinary objects in our database. How-
ever, these objects do not lead an isolated existence. In this section we will
show how we bring the relations between objects in our model. To illustrate
the way relations between autonomous objects are modelled, we first give an
example from the banking world. In the next section we will look at some
examples in computer graphics.

Example A bank account is a relation between a person and a bank. A
person can open an account with a bank, if he satisfies certain conditions.
These conditions vary from presenting a valid identity card to not having
a bad credit record. After that the account will be opened, in other words
the relation is established. The person now can do a number of things
because of this relation. He can, for example, transfer money to other bank
accounts. Naturally, the relation can also be terminated. Again a number
of conditions need to be satisfied. The bank account will not be closed, if



there is an overdraft on it. Similarly the conditions of the bank account will
describe what happens in exceptional circumstances. An example is that
the account is transferred to one of the heirs if the account holder dies.

In an autonomous database we proceed in an analogous way in establishing
relations. A relation is defined by a protocol. The protocol describes how a
relation is initiated, how it can be terminated and what is done in exceptional
cases. The protocol for a relation is stored partly in a relation class object
and partly in a relation object. The information needed to initiate a relation
is stored in the relation class object. The rest of the protocol, needed during
the lifecycle of the relation is kept in a relation object.

On an initiation request the relation class object first checks if the objects
that request the relation satisfy the conditions in the protocol. If this is
successful the actions to actually create the relation are taken. In order to
store information about the relation a relation object is created. A relation
object is itself an autonomous object. This means that it can in turn engage
in relations with other objects. At the same time the objects that engage
in the relation are extended with the capabilities to deal with the relation.
This is done through the addon mechanism. An addon defines an extension
to an object. If an object is extended through an addon, it acquires the
capabilities defined in the addon. Since an addon only defines an extension
to an autonomous object, there are no instances of an addon. If an object is
extended through an addon, the added capabilities cannot be distinguished
from the inherent capabilities.

The relation object accepts request for termination of a relation. Again
the conditions in the protocol will be checked and if these are satisfied,
the relation is terminated. The actions are basically the reverse of those
executed on the creation of the relation. This means that the capabilities
added to the objects by the addons belonging to the relation are removed
and the relation object ceases to exist. However, the protocol might state
application-specific actions to be taken. For example, a bank might wish to
keep some historical information on closed bank accounts.

Finally, the protocol in the relation objects defines the actions taken in ex-
ceptional cases. The most common exception is the situation where one of
the partners in the relation ceases to exist. Conceptually the existence of the
relation is dependent on the existence of the partners in the relation. There-
fore the default protocol will probably be that the relation ceases to exist,
if one of the partner objects dies. Again, application specific requirements
might lead to another protocol.



2.4 Structure of the Object Model

The type structure in the autonomous data model is three layered. Object
instances have a class as their type and the classes are typed by one of the
three metaclasses. The three levels can be described as follows:

Instance Level At this level the instances of objects and relation objects
live. These objects are the representation of the real world the system tries
to model. This means that lines, squares and circles are at this level.

Class Level At the class level each class is represented by a class object.
The class object takes care of creation and deletion of instances and keeps
track of them during their lifetime. Class objects of relation classes have
similar tasks as described in the previous section. Addons offering extensions
of objects can also be found at this level.

Each object at the class level keeps track of the object instances it is involved
with. This means that a class object or a relation class object knows the
objects in their class. An addon keeps track of the objects that it has
extended. This way all instances of a class can be accessed through the
class object. This means that queries for objects of a certain class should
be addressed to the class object of that class.

Metaclass Level The metaclasses are also present in the system as ob-
jects. The metaclass level is the highest level in the system. The main
reason of their presence is to facilitate schema evolution. Through the meta-
classes new classes can be added to the database and existing classes can
be altered. Analoguous to requests for creating and discarding instances
accepted by class objects, metaclass objects accept requests to create and
discard classes. In the object model described in this section we see three
metaclasses, viz. object classes, relation object classes, and object addons.

A sketch of this structure and what lives at each level is given in Figure 1.

3 Implementing Constraints in the Autonomous
Data Model

In this section we show how constraints are dealt with in the autonomous
data model. A constraint between two graphic objects is a relation between
these two objects. We look at a number of different approaches to constraint
solving, such as described for example in [12], and show that the autonomous
data model can be used for all of them.
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Figure 1: Structure of the object model

In the autonomous data model a constraint is a relation between two objects.
When the constraint is created, a relation object is created that contains
the actions to be taken to correct constraint violations. The constrained
graphical objects are extended with rules and dynamic constraints to deal
with the constraint relation. The rules define the reactions of the objects
to changes in its state that might cause constraint violations. The dynamic
constraints of an object are modified in such a way that it accepts requests
to change its state from the relation object.

Local Propagation The simplest approach to constraint solving is a local
one. This is modelled simply by having a relation for each constraint. Each
relation attempts to satisfy its constraint locally. An example is given in
Figure 2. The lines in this figure must maintain an angle of 90 degrees
relative to each other. The strategy used to enforce the constraint is to
change the angle of the other line with an equal amount.

To this end we create a relation between the two lines. Because the way the
constraint is enforced is part of the behaviour of the constraint relation, the
relation object contains the following rules to take action in case of changes
of the angles of the lines.

Relation Object Constraint90



Leftline
Right line

Constraint90

Left Right

Figure 2: Perpendicular lines

Attributes
Left: GraphicObject
Right: GraphicObject
Rules
On Left.changeAngle(swing)
if Left.angle - Right.angle != 90
Do Right.changeAngle(swing);
On Right.changeAngle(swing)
if Left.angle - Right.angle != 90
Do Left.changeAngle(swing);
EndObject

The rules in this object trigger messages to the constrained objects if the
constraints are violated by a change of the angle of the line. Therefore the
dynamic constraints of the constrained objects are extended to accept angle
setting from the constraint relation object.

A ddOn ConstrainedByConstraint90
Attributes
constrainer : Constraint90
Dynamic Constraints
([sender=constrainer|angle)*

EndAddOn

If we apply this strategy to a collection of objects, each constraint is rep-
resented by a relation. This is illustrated by the example depicted in Fig-
ure 3, taken from [15]. Lines a and b must remain upright. Line ¢ has a
fixed length. These constraints are all on the objects themselves. Therefore
they are encapsulated with the objects in the autonomous data model. Two
other requirements further constrain the behaviour of the lines. These are
that one end of line ¢ must touch line a and that the other end must touch
line b.

10



linea lineb

. ACtouch BCtouch
linec

linea linec lineb

Figure 3: Local propagation with multiple objects

To enforce the constraints there is a relation ACtouch between line a and
line ¢ and a relation BCtouch between line b and line ¢. Suppose that our
constraint enforcement strategy is that we allow line ¢ only to be rotated
around its midpoint. In that case the implementation of the relation object
ACtouch will be to instruct line ¢ to rotate if line a moves closer to line b.
On this rotation BCtouch will instruct line b to move closer to line a.

An alternative strategy is that we wish to keep line b fixed and allow line
¢ to be translated. In that case we have a different implementation of the
relation objects ACtouch and BCtouch. The reaction of ACtouch remains
the same, but instead of instructing line b to move, BCtouch will instruct
line ¢ to translate in such a way that its endpoint remains on line b. This
scenario implies another action to move line a to the right again to keep
touching line c.

Coordination between constraints In the previous two examples we
used local constraint satisfaction. In some situations it might be desirable to
coordinate the solution of a number of constraints. The notion of a relation
is again central in the coordination of constraints. If we wish to coordinate
the solution of a set of constraints in some way, we do so by creating a
relation between those constraints.

This scheme works for all kinds of coordination. The coordinating activity
is defined by the protocol of the coordinating relation. It may vary from
solving the constraints simultaneously to giving one constraint priority over
another. Prioritising constraints may be useful if there are multiple con-
straints between a pair of objects. An example is given in Figure 4.
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Figure 4: Coordinating two constraints

Here we have two constraints between a rectangle and a circle. The first
constraint is that the areas of both figures must be equal. Secondly, both
figures are required to touch. Suppose now the rectangle grows and con-
sequently violates both constraints. Without coordination there are two
possible scenarios to achieve renewed satisfaction of the constraints. The
first possibility is to enlarge the area of the circle and then move it in order
to have the figures touch again. The second possibility first moves the circle,
then grows it and again moves it in order to restore the touching constraint.

The result is the same in both cases, but for reasons of efficiency we might
prefer the first solution over the second. To achieve this we must establish
a relation between the two constraints. This relation gives one constraint
priority over another. To achieve this the rules and dynamic constraints of
the area and touch constraints are extended to inform the prioritiser and
accept synchronising messages.

A ddOn OrderedConstraint
Attributes
guvnor : Prioritiser
Dynamic Constraints
(checkConstraint;PrioritiserOK;newSolution)*
Rules
On newSolution
do AskPrioritiser
EndAddOn

The prioritiser gives priority to the area constraint, if both constraints are
violated at the same time. If both constraints ask the constraint prioritiser
to go ahead, only one, the area constraint, will receive permission to do so.

Relation Object ConstraintPrioritiser
Attributes
first : Constraint
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second : Constraint

Rules
On first.AskPrioritiser & second.AskPrioritiser
do first.PrioritiserOK;

EndObject

Another situation where regulation of local propagation can be useful is in
the situation depicted in Figure 5. Here a node indicates a graphical object.
An edge between two nodes denotes the presence of a constraint between
the two graphical objects represented by the nodes.

Rest of

Constraint Network

Figure 5: Blocking propagation from part of a constraint network.

In this situation a change in one of the objects a to e that violates a con-
straint, triggers local propagation of new values. Because the subgraph is
highly connected, it may take some time before a stable state satisfying all
constraints is found. It may be desirable to prevent any attempts at satis-
fying constraints outside this subgraph before it has reached a stable state.
In other words, constraint c-f can only be solved after b-c, e-c and d-c have
been solved. This is a metaconstraint, so it is implemented by establishing
a relation between these four constraints.

Global Constraint Solving The autonomous data model does not force
a constraint solving strategy on the programmer. We can use it equally
well to implement a global constraint solving strategy. In this strategy, we
have one central constraint enforcer, that checks for constraint violations
and generates a new state for the graphical objects in the system.

With the view of constraints as relations limiting the behaviour of au-
tonomous objects in mind, we look at what a global constraint solver does
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relative to the constraints. If one of the constraints is violated, the con-
straint solver takes the current state of the system and generates a new
state that does satisfy the constraints. A constraint in this situation is a
relation between the constrained objects and the global constraint solver.
The relation checks for violation of its constraint and, if necessary, passes
data on to the constraint solver.

Constraint Solver

Touching Constraint90 EqualLength

Square Circle LineA LineB

Figure 6: Global constraint solving with autonomous objects

4 Concluding Remarks

As we have shown in the previous section, autonomous objects offer a very
flexible framework for implementation of constraint solving strategies. The
unavoidable violation of attribute encapsulation is regulated by the con-
straint relations. The definition of a relation in a protocol gives us an exact
description of the workings of a relation.

The autonomous data model simplifies the way we deal with constraints in
a system. By offering a view of constraints as relations between objects we
emphasise the local character of a constraint. Consequently, problems are
solved at the place where they occur. This approach promotes a “divide
and conquer” strategy to solving problems in constraint satisfaction, which
in general favours simpler solutions.

Constraint maintenance is mostly declarative in the autonomous data model.
Detection of possible violations, checking for them and corrective action can
all be defined in the rules. However, because the autonomous model offers a
superset of functionality of a conventional object-oriented system, it allows
other ways to implement constraint enforcement.

Because of the addon mechanism, the implementation of the graphical object
is separate from any functionality needed for the constraint mechanism. We
can implement, for example, a pentagon without needing to worry about the
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possible constraints on the pentagon. Therefore, new types of constraints
can be added to the system at any time. It also means that each object in
the system only carries the functionality it currently needs.

In addition a data model can serve in an implementation as a uniform rep-
resentation. This way we can avoid using custom-made representations for
certain constraint solving strategies. This facilitates the combination of
multiple strategies and the interoperability of software components.

The contribution of database research to computer graphics research in gen-
eral, and the area of constraint programming in particular, can be found in
data models. A data model can help in getting a good conceptual under-
standing of a problem through a clear description of the data involved. We
have shown in this paper that the view of constraints between graphical ob-
jects as relations between autonomous objects leads to simple, mostly local,
solutions to problems encountered in dealing with constraints.
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